Reg. No. : \square

Question Paper Code : X20478

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Third Semester
Electrical and Electronics Engineering EE 6301 - DIGITAL LOGIC CIRCUITS
(Common to Electronics and Instrumentation Engineering Instrumentation and Control Engineering)
(Regulations 2013)
(Also Common to PTEE 6301 - Digital Logic Circuits for B.E. (Part - Time)
Electrical and Electronics Engineering Third Semester - (Regulations 2014))
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions

PART - A

1. Construct OR gate and AND gate using NAND gates.
2. Convert the following Excess-3 numbers into decimal numbers :
a) 1011
b) 100100110111 .
3. What is a K-map ?
4. Compare decoder and demultiplexer.
5. Convert T Flip Flop to D Flip Flop.
6. State the rules for state assignment.
7. What are the two types of asynchronous sequential circuits ?
8. State the difference between PROM, PLA and PAL.
9. Give the syntax for package declaration and package body in VHDL.
10. Write the VHDL code for a 2×1 multiplexer using behavioural modeling.
11. a) Explain in detail about error detecting and error correcting code.
(OR)
b) Write short notes on following :
i) RTL
ii) DTL
iii) TTL and
iv) ECL.
12. a) i) Reduce the following function using K-map.

$$
\begin{equation*}
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,2,3,8,9,12,13,15) \tag{6}
\end{equation*}
$$

ii) Design a full adder using two half-adders and an OR gate.
(OR)
b) i) Design a BCD to Excess 3 code converter.
ii) Implement the following Boolean function using 8:1 Mux :

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,4,8,9,15) \tag{6}
\end{equation*}
$$

13. a) Design a sequence detector that produces an output ' 1 ' whenever the non-overlapping sequence 101101 is detected.
(OR)
b) i) Explain the realization of JK flip flop from T flip flop.
ii) Write short notes on SIPO and draw the output waveforms.
14. a) i) What are Static-0 and Static-1 hazards ? Explain the removal of hazards using hazard covers in K-map.
ii) Explain cycles and races in asynchronous sequential circuits.

(OR)

b) i) What are transition table and flow table? Give suitable examples.
ii) Implement the following function using PLA and PAL :
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,3,5,7)$.
15. a) Design a 3-bit magnitude comparator and write the VHDL code to realize it using structural modeling.
(OR)
b) Design a 4×4 array multiplier and write the VHDL code to realize it using structural modeling.
16. a) Assume that there is a parking area in a shop whose capacity is 10 . No more than 10 cars are allowed inside the parking area and the gate is closed as soon as the capacity is reached. There is a gate sensor to detect the entry of car which is to be synchronized with the clock pulse. Design and implement a suitable counter using JK flip flops. Also, determine the number of flip flops to be used if the capacity is increased to 50 .

(OR)

b) Design a 4 bit code converter which converts given binary code into a code in which the adjacent number differs by only 1 by the preceding number. Also, develop VHDL coding for the above mentioned code converter.

