Reg. No. :

Question Paper Code :X20478

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester Electrical and Electronics Engineering EE 6301 – DIGITAL LOGIC CIRCUITS (Common to Electronics and Instrumentation Engineering Instrumentation and Control Engineering) (Regulations 2013) (Also Common to PTEE 6301 – Digital Logic Circuits for B.E. (Part – Time) Electrical and Electronics Engineering Third Semester – (Regulations 2014))

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Construct OR gate and AND gate using NAND gates.
- 2. Convert the following Excess-3 numbers into decimal numbers :
 - a) 1011
 - b) 1001 0011 0111.
- 3. What is a K-map?
- 4. Compare decoder and demultiplexer.
- 5. Convert T Flip Flop to D Flip Flop.
- 6. State the rules for state assignment.
- 7. What are the two types of asynchronous sequential circuits ?
- 8. State the difference between PROM, PLA and PAL.
- 9. Give the syntax for package declaration and package body in VHDL.
- 10. Write the VHDL code for a 2×1 multiplexer using behavioural modeling.

X2047		78	-2-	
			PART – B (5×13=65 Ma	rks)
11.	a)	Ex	plain in detail about error detecting and error correcting code.	(13)
			(OR)	
	b) Write		rite short notes on following :	
		i)	RTL	(3)
		ii)	DTL	(3)
		iii)	TTL and	(4)
		iv)	ECL.	(3)
12.	a)	i)	Reduce the following function using K-map.	(7)
			$f(A, B, C, D) = \pi M(0, 2, 3, 8, 9, 12, 13, 15)$	
		ii)	Design a full adder using two half-adders and an OR gate.	(6)
			(OR)	
	b)	i)	Design a BCD to Excess 3 code converter.	(7)
		ii)	Implement the following Boolean function using 8 : 1 Mux :	
			$F(A, B, C, D) = \Sigma m(0, 1, 3, 4, 8, 9, 15).$	(6)
13.	a)	Design a sequence detector that produces an output '1' whenever the		
		noi	n-overlapping sequence 101101 is detected.	(13)
			(OR)	
	b)	i)	Explain the realization of JK flip flop from T flip flop.	(7)
		ii)	Write short notes on SIPO and draw the output waveforms.	(6)
14.	a)	i)	What are Static-0 and Static-1 hazards? Explain the removal of hazards	
			using hazard covers in K-map.	(7)
		ii)	Explain cycles and races in asynchronous sequential circuits.	(6)
			(OR)	
	b)	i)	What are transition table and flow table ? Give suitable examples.	(5)
		ii)	Implement the following function using PLA and PAL :	
			$f(x, y, z) = \Sigma m(0, 1, 3, 5, 7).$	(8)
15.	a)	De it u	esign a 3-bit magnitude comparator and write the VHDL code to realize using structural modeling.	(13)
			(OR)	
	b)	De str	esign a 4 × 4 array multiplier and write the VHDL code to realize it using ructural modeling.	(13)

X20478

PART - C

(1×15=15 Marks)

16. a) Assume that there is a parking area in a shop whose capacity is 10. No more than 10 cars are allowed inside the parking area and the gate is closed as soon as the capacity is reached. There is a gate sensor to detect the entry of car which is to be synchronized with the clock pulse. Design and implement a suitable counter using JK flip flops. Also, determine the number of flip flops to be used if the capacity is increased to 50. (15)

(OR)

b) Design a 4 bit code converter which converts given binary code into a code in which the adjacent number differs by only 1 by the preceding number. Also, develop VHDL coding for the above mentioned code converter. (15)